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Abstract. Maximization of submodular functions on a ground set is a NP-hard combinatorial

optimization problem. Data correcting algorithms are among the several algorithms suggested
for solving this problem exactly and approximately. From the point of view of Hasse diagrams
data correcting algorithms use information belonging to only one level in the Hasse diagram

adjacent to the level of the solution at hand. In this paper, we propose a data correcting
algorithm that looks at multiple levels of the Hasse diagram and hence makes the data
correcting algorithm more efficient. Our computations with quadratic cost partition problems
show that this multilevel search effects a 8- to 10-fold reduction in computation times, so that

some of the dense quadratic partition problem instances of size 500, currently considered as
some of the most difficult problems and far beyond the capabilities of current exact methods,
are solvable on a personal computer working at 300 MHz within 10min.

Key words: Data correcting, Hasse diagram, Multilevel search, Quadratic cost partition
problem

1. Introduction

Let N ¼ f1; 2; . . . ; ng and 2N denote the set of all subsets of N. A function
z : 2N !< is called submodular if for each I, J 2 2N, zðIÞ þ zðJÞP zðI [ JÞþ
zðI \ JÞ. The solution process of many classical combi-natorial optimization
problems, like the simple plant location problem, the generalized transportation
problem, the quadratic cost partition (QCP) problem with nonnegative edge
weights, and set covering, involve the maximization of a submodular (or, equiv-
alently, minimization of a supermodular) function, i.e. the problem:
maxfzðIÞjI � Ng.
Although the general problem of the maximization of a submodular

function is known to be NP-hard, there has been a sustained research
effort aimed at developing practical procedures for solving medium and
large scale problems in this class. Often the approach taken has been

Journal of Global Optimization (2005) 32: 65–82 � Springer 2005
DOI 10.1007/s10898-004-5909-z



problem specific, and submodularity of the underlying objective function
has been only implicit to the analysis. For example, Barahona et al. [2]
addressed the max-cut problem and developed a branch-and-cut algorithm,
Beasley [1] applied Lagrangean heuristics to several classes of location
problems including SPL problems, Lee et al. [12] studied the QCP problem
of which max-cut with nonnegative edge weights is a special case, and
Glover et al. [6] reported their computational experiments for binary qua-
dratic programs (BQP) with adaptive memory tabu search procedures.
Benati [4] and Goldengorin et al. [9] applied a data correcting algorithm to
the problem of minimization (maximization) a supermodular (submodular)
function by which we can solve to optimality, uncapacitated competitive
location problem instances of size 50, and QCP instances on dense graphs
up to 100 vertices, respectively.
The purpose of this paper is to improve on the data correcting algorithm

proposed in [9]. Data correcting algorithms work by ‘‘correcting’’ the data
of a given problem instance to obtain a new problem instance which is poly-
nomially solvable. In case such an instance is not available, the algorithm
uses a branching rule to decompose the problem into subproblems and then
looks at each of the subproblems individually. The choice of the branching
variable in the algorithm in [9] is based on an examination of solutions that
are one level deeper in the Hasse diagram from the current solution. The
algorithm that we propose here searches more than one level deep in the
Hasse diagram. The tradeoff of course is between the effort of searching
deeper in the Hasse diagram and the number of nodes pruned by the algo-
rithm as a result of searching deeper in the Hasse diagram.
In the next section in this paper, we describe the data correcting algo-

rithm that we propose in this paper. We first introduce an algorithm called
the preliminary preservation algorithm of order r. This is an extension of
the PP algorithm presented in [9], which looks at r levels of the Hasse dia-
gram instead of only one level. This algorithm is used to define a class of
polynomially solvable instances for submodular functions algorithmically,
which is applied by a data correcting algorithm to solve submodular func-
tions. Section 3 reports our computational experience with our data cor-
recting algorithm for quadratic cost partition problems. Section 4
concludes the paper.

2. The Data Correcting Algorithm Based on Multilevel Search

In this section we first describe a class of algorithmically defined poly-
nomially solvable instances for submodular function maximization prob-
lems. We then describe a data correcting algorithm that uses the class of
polynomially solvable instances to solve a general submodular function
maximization problem.
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The class of polynomially solvable instances that we describe here is an
algorithmic class, i.e. they are defined using a polynomial time algorithm
called the preliminary preservation algorithm of order r (PPAr). Normally
this algorithm terminates with a subgraph of the Hasse diagram of the ori-
ginal instance which is guaranteed to contain the maximum. However, for
instances where PPAr returns a subgraph with a single node, that node is
the maximum, and the instance was solved in polynomial time. Instances
such as these make up the class of polynomially solvable instances that we
consider here.
Let z be a real-valued function defined on the power set 2N of N ¼
f1; 2; . . . ; ng; nP1. For each S,T 2 2N with S � T, we define

½S;T� ¼ fI 2 2NjS � I � Tg:

Note that ½;;N� ¼ 2N. Any interval ½S;T� is a subinterval of [;, N] if
; � S � T � N. We denote this using the notation ½S;T� � ½;;N�. In this
paper an interval is always a subinterval of [;, N]. Throughout this paper,
it is assumed that z attains a finite maximum value on [;, N] which is
denoted by z�½;;N�, and z�½S;T� ¼ maxfzðIÞ: I 2 ½S;T�g for any ½S;T� �
½;;N� . We also define

dþk ðIÞ ¼ zðIþ kÞ � zðIÞ and d�k ðIÞ ¼ zðI� kÞ � zðIÞ:

The following theorem and corollaries from Goldengorin et al. [9] act as
a basis for the preliminary preservation (PP) algorithm described therein,
which in turn is used by the data correcting algorithm (DCA).

THEOREM 1. Let z be a submodular function on ½S;T� � ½;;N� and let
k 2 T nS. Then the following assertions hold.

(a) z�½Sþ k;T� � z�½S;T� k� O zðSþ kÞ � zðSÞ ¼ dþk ðSÞ ¼ dþk .
(b) z�½S;T� k� � z�½Sþ k;T� O zðT� kÞ � zðTÞ ¼ d�k ðTÞ ¼ d�k .

COROLLARY 2 (Preservation rules of order zero). Let z be a sub modular
function on ½S;T� � ½;;N� and let k 2 TnS. Then the following assertions
hold.

(a) First preservation rule: If dþk ðSÞO0, then z�½S;T� ¼ z�½S;T� k�P
z�½Sþ k;T�.

(b) Second preservation rule: If d�k ðTÞO0, then z�½S;T� ¼ z�½Sþ k;T�P
z�½S;T� k�.

We now provide pseudocodes for the PP and DCA for the sake of com-
pleteness.
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The PP algorithm accepts an interval ½S;T�, S � T and tries to apply
Corollary 2 repeatedly. It returns an interval ½X;Y�, S � X � Y � T, such
that z�½S;T� ¼ z�½X;Y�. The pseudocode for this algorithm is given below.

The PP algorithm is called repeatedly by the DCA to generate a solution
to the instance within the prescribed accuracy level a. The pseudocode for
DCA is given below. A good problem-specific upper bound will improve
the performance of the algorithm.

Algorithm PP([S,T])
begin

if T ¼ S return ½S;S�;
while T 6¼ S do begin

dþmin :¼ minfdþk jk 2 TnSg;
d�min :¼ minfd�k jk 2 TnSg;
if dþminO 0 then begin

kþmin :¼ arg minfk 2 TnSjdþk ¼ dþming;
T :¼T� kþmin;

end
else if d�minO0 then begin

k�min :¼ arg minfk 2 TnSjd�k ¼ d�ming;
S :¼Sþ k�min;

end
else return ½S;T�;

end;
end.

Algorithm DCA(½S;T�,a)
begin

½S;T� :¼ PPð½S;T�Þ;
if T ¼ S return S;
dþmin :¼ minfdþk jk 2 TnSg;
d�min :¼ minfd�k jk 2 TnSg;
if dþmin O d�min then begin

if dþmin O a then begin
kþmax :¼ arg minfk 2 TnS j dþk ¼ dþming;
return DCA ð½S;T� kþmin�; a�maxf0; dþmingÞ (�Correction�)

end;
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The preservation rules mentioned in Corollary 2 look at a level which is
exactly one level deeper in the Hasse diagram than the levels of S and T.
However, instead of looking one level deep we may look r levels deep in
order to determine whether we can include or exclude an element. Let

Mþr ½S;T� ¼ fI 2 ½S;T� : jInSjOrg;
M�r ½S;T� ¼ fI 2 ½S;T� : jTnIjOrg:

The set Mþr ½S;T� is a collection of all sets representing solutions contain-
ing more elements than S, and which are no more than r levels deeper than
S in the Hasse diagram. Similarly, the set M�r ½S;T� is a collection of all
sets representing solutions containing less elements than T, and which are
no more than r levels deeper than T in the Hasse diagram. Let us further
define the collections of sets

Nþr ½S;T� ¼Mþr ½S;T�nMþr�1½S;T�;
N�r ½S;T� ¼M�r ½S;T�nM�r�1½S;T�:

The sets Nþr ½S;T� and N�r ½S;T� are the collection of sets which are located
exactly r levels above S and below T in the Hasse diagram, respectively.
Further, let vþr ½S;T� ¼ maxfzðIÞ : I 2Mþr ½S;T�g, v�r ½S;T� ¼ maxfzðIÞ : I 2

M�r ½S;T�g, wþrk½S;T� ¼ maxfdþt ðIÞ : I 2 Nþr ½Sþ k;T�g and w�rk½S;T� ¼
maxfd�t ðIÞ:I 2 N�r ½S;T� k�g.

else begin (� Branch �)
x1 :¼DCA ð½Sþ k�min;T�; aÞ;
x2 :¼DCA ð½S;T� kþmin�; aÞ;
if zðx1ÞPzðx2Þ return x1
else return x2;

end;
end
else begin

if d�minOa then begin
k�min :¼ arg minfk 2 T nSjd�k ¼ d�ming;
return DCA ð½Sþ k�minT�; a�maxf0; d�mingÞ (� Correction �)

end;
else begin (�Branch�)

x1 :¼DCA ð½Sþ k�min;T�; aÞ;
x2 :¼DCA ð½S;T � kþmin�; aÞ;
if zðx1ÞPzðx2Þ return x1
else return x2;

end;
end;

end.
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THEOREM 3. Let z be a submodular function on ½S;T� � ½;;N� with
k 2 TnS and let r be a positive integer. Then the following assertions hold.

(a) If jNþr ½Sþ k;T�j > 0, then z�½Sþ k;T� �maxfz�½S;T� k�,vþr ½S;T�gO
maxfwþrk½S;T�; 0g.

(b) If jN�r ½S;T� k�j > 0, then z�½S;T� k� �maxfz�½Sþ k;T�,v�r ½S;T�gO
maxfw�rk½S;T�; 0g:

Proof. We prove only part (a) since the proof of the part (b) is similar.
We may represent the partition of interval ½S;T� as follows:

½S;T� ¼Mþr ½S;T� [
[

I2Nþr ½S;T�
½I;T�:

Using this representation on the interval ½Sþ k;T�, we have z�½Sþ
k;T� ¼ maxfvþr ½Sþ k;T�;maxfz�½Iþ k;T� : I 2 Nþr ½S;T�gg. Let IðkÞ 2 arg
maxfz�½Iþ k;T� : I 2 Nþr ½S;T�g.
There are two cases to consider: z�½IðkÞ þ k;T�Pvþr ½Sþ k;T�, and

z�½IðkÞ þ k;T� < vþr ½Sþ k;T�.
In the first case z�½Sþ k;T� ¼ z�½IðkÞ þ k;T�. For IðkÞ 2 Nþr ½S;T� we can

apply Theorem l(a) on the interval ½IðkÞ;T� to obtain z�½IðkÞþ
k;T� � z�½IðkÞ;T� k�Odþk ðIðkÞÞ, so that in this case z�½Sþ k;T� � z�½IðkÞ;
T� k�O dþk ðIðkÞÞ. Note that for ½IðkÞ;T� k� � ½S;T� k� we have
z�½S;T� k�P z�½IðkÞ;T� k�, which implies that z�½Sþ k;T� � z�½S;T�
k�O dþk ðIðkÞÞ. Adding two maximum operations we get

z�½Sþ k;T� �maxfz�½S;T� k�; vþr ½Sþ k;T�gOmaxfdþk ðIðkÞÞ; 0g:

Since wþrk½S;T� is the maximum of dþk ðIÞ for I 2 Nþr ½Sþ k;T�, we have
the required result.
In the second case z�½Sþ k;T� ¼ vþr ½Sþ k;T� which implies that

z�½Sþ k;T� � vþr ½Sþ k;T�g ¼ 0 or z�½Sþ k;T� �maxfz�½S;T� k�; vþr ½Sþ
k;T�gO0. Adding a maximum operation with wþrk½S;T� completes the proof
of case (a). (

COROLLARY 4 (Preservation rules of order r). Let z be a submodular
function on ½S;T� � ½;;N� and let k 2 TnS. Then the following assertions
hold.

(a) First preservation rule of order r: If wþrk½S;T�O0, then z�½S;T� ¼
maxfz�½S;T� k�, vþr ½Sþ k;T�gPz�½Sþ k;T�.

(b) Second preservation rule of order r: If w�rk½S;T�O0, then z�½S;T� ¼
maxfz�½Sþ k;T�; v�r ½S;T� k�gPz�½S;T� k�.
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Notice that when we apply Corollary 2 to an interval, we get a reduced
interval, however, when we apply Corollary 4, we get a value vr in addition
to a reduced interval.
We call a preservation rule stronger (weaker) than another if it elimi-

nates a larger (resp. smaller) portion of the Hasse diagram while searching
for a maximum of the submodular function over an interval. In this con-
text, the following theorem is interesting and intuitive.

THEOREM 5. Preservation rules of order one are not weaker than preser-
vation rules of order zero.

Proof. We compare only first preservation rules of order one and order
zero because the proof for case of second preservation rules is similar.
Assume that the preservation rule of order one is not applicable, i.e.,

maxfdþk ðSþ tÞ:t 2 TnðSþ kÞg ¼ dþk ðSþ t0Þ > 0. The definition of submod-
ularity of z implies dþk ðSÞPdþk ðSþ t0Þ. Hence, dþk ðSÞ > 0 and the first pres-
ervation rule is not applicable. In case when the first preservation rule of
order zero is applicable, i.e., dþk ðSÞO0 we have 0Pdþk ðSÞPdþk ðSþ tÞ for all
t 2 TnðSþ kÞ, i.e., maxfdþk ðSþ tÞ : t 2 T nðSþ kÞgO0 which leads to a con-
tradiction. (
Note that, using induction, we can also show that preservation rules of

order r are not weaker than preservation rules of order r� 1.
Note also that the computational complexity for rules of order one and

order zero is different not only in their time complexities but also in their
space complexities. This is because, together with the preserved interval
either ½Sþ k;T� or ½S;T� k� we should preserve exactly one additional
value either zðT� kÞ or zðSþ kÞ, respectively. This property is also valid
for preservation rules of order rP1.
In order to apply Corollary 4, we need functions that compute the value

of wþrk½S;T�, w�rk½S;T�vþr ½Sþ k;T�, and v�r ½S;T� k�. To that end, we define
two recursive functions, PPArplus to compute wþrk½S;T� and vþr ½Sþ k;T�,
and PPArminus to compute w�rk½S;T� and v�r ½S;T� k�. The pseudocode for
PPArplus is shown below. Its output is a 3-tuple, containing, in order,
wþrk½S;T� and vþr ½Sþ k;T�, and a solution in Mþr ½S þ k;T� whose objective
function value is vþr ½Sþ k;T�. The pseudocode for PPArminus can be con-
structed in a similar manner.

function PPArplus ð½S;T�; r; kÞ
begin

w; �1; v �1; vset ;;
ðw; v; vsetÞ  IntPPArPlusð½S; k;T�r;w; v; vsetÞ;
return (w,v,vset);

end;
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Note that PPArplus and PPArminus are both O n
n
r

� �� �
, i.e. polynomial

for a fixed value of r. However, in general, they are not polynomial in r.

We now use PPArplus and PPArminus to describe the preliminary pres-
ervation algorithm of order r (PPAr(r)). Given a submodular function z on
½X;Y� � ½;;N�, PPAr outputs a subinterval ½S;T� of ½X;Y� and a set B such
that z�½X;Y� ¼ maxfz�½S;T�; zðBÞg and minfwþrk½S;T�;w�rk½S;T�g > 0 for all
k 2 T nS. At iteration i of the algorithm when the search has been
restricted to ½Si;Ti�, starts by applying the PP algorithm (from Goldengorin
et al. [9]) to this interval and reducing it to ½S0i;T 0i �. If jT 0i nS0ij > 0, an ele-
ment k 2 T 0i nS0i is chosen, and the algorithm tries to apply Corollary 4(a)
to decide whether it belongs to the set that maximizes zð�Þ over ½Si;Ti� or
not. If it does, then the search is restricted to the interval ½S0i;T0i�. Other-

function IntPPArplus ð½X;Y�; r;w; v; vsetÞ
begin

for each t 2 YnX do begin
if zðXþ tÞ > v then begin

v zðXþ tÞ;
vset ðXþ tÞ;

end;
if dþt ðXþ tÞ > w then w dþt ðXþ tÞ;
if dþt ðXþ tÞ > 0 and r > 1 then

ðw; v; vsetÞ  IntPPArPlusð½Xþ t;Y�; r� 1;w; v; vsetÞ;
end;
return ðw; v; vsetÞ;

end;

Algorithm PPArð½S;T�; rÞ
begin

X S;Y T;B argmaxfzðSÞ; zðTÞg;
while Y 6¼ X do begin

½Si;Ti�  PPð½X;Y�Þ;
dþ  minfdþk ðSÞjk 2 TnSg;
d�  minfd�k ðTÞjk 2 TnSg;
if dþ > d� then begin

kþ  argminfdþt ðSÞjt 2 TnSg;
ðw; v; vsetÞ  PPArplusð½Si;Ti�; r; kþÞ;
if v > zðBÞ then B vset;
if wO0 then Y Ti � kþ;
else return ð½Si;Ti�;BÞ;

else begin
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wise, the search tries to apply Corollary 4(b) to decide whether the interval
can be reduced to ½S0i;T 0i � k�.
It is clear that if r ¼ jTnSj, PPAr will always find an optimal solution to

our problem. However, PPAr is not a polynomial in r, and so PPAr with a
large r is not practically useful.
We can embed PPAr in a branch and bound framework to describe

DCAr, a data correcting algorithm based on PPAr. It is similar to the
DCA proposed in [9]. For DCAr we are given a submodular function z to
be maximized over an interval ½S;T�, and an accuracy parameter e0, and
we need to find a solution such that the difference between the objective
function values of the solution output by DCAr and the optimal solution
will not exceed e0.
Notice that for a submodular function z, PPAr with a fixed r may termi-

nate with T 6¼ S and minfwþri ½S;T�;w�ri ½S;T�ji 2 TnSg ¼ x > 0. The
basic idea behind DCAr is that if this situation occurs, then the data
of the current problem is corrected in such a way that x is nonpositive
for the corrected function and PPAr can continue. Moreover, each correc-
tion of z needs to be carried out in such a way that the corrected func-
tion remains submodular. The attempted correction is carried
out implicitly, in a manner similar to the one in [9] but using Corollary
4 instead of Corollary 2. Thus, for example, if wþrj ½S;T� ¼ xOe0, then
PPAr is allowed to continue, but the accuracy parameter reduced to
e0 �maxf0;xg.
If such a correction is not possible, i.e. if x exceeds the accuracy param-

eter, then we branch on a variable k 2 argmaxfdþi ðSÞ; d�i ðTÞji 2 T nSg to
partition the interval ½S;T� into two intervals ½Sþ k;T� and ½S;T � k�.
This branching rule was proposed in Goldengorin [7]. An upper bound for
the value of z for each of the two intervals is then computed to see if either
of the two can be pruned. We use an upper bound due to Khachaturov
[11] described as follows. Let dþðS;TÞ ¼ fdþi ðSÞ : dþi ðSÞ > 0; i 2 TnSg and
d�ðS;TÞ ¼ fd�i ðTÞ : d�i ðTÞ > 0; i 2 TnSg. Further let dþ½i� (respectively
d�½i�) denote the ith largest element of dþðS;TÞ (respectively d�ðS;TÞ).
Then ub described below is an upper bound to z�½S;T�.

k�  argminfd�t ðSÞjt 2 TnSg;
ðw; v; vsetÞ  PPArminusð½Si;Ti�; r; kÞ;
if v > zðBÞ then B vset;
if wO0 then X Si þ k�;
else return ð½Si;Ti�; fwþri ½Si;Ti�g; fw�ri ½Si;Ti�g;BÞ;

end;
end;

end;
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ub½S;T� ¼ max min
i¼1;...;jTnSj

zðSÞ þ
Xi

j¼1
dþ½j�; zðTÞ þ

Xi

j¼1
d�½j�

( )( )
:

The following pseudocode describes DCAr formally.

Algorithm DCAr ð½S;T�; e; rÞ
begin

best set argmaxfzðSÞ; zðTÞg;
best zðbest setÞ;
ðbest set; bestÞ  IntDCArð½S;T�; e; r; best set; bestÞ;
return best set;

end.
function IntDCAr ð½S;T�; e; r; best set; bestÞ
begin

ð½S;T�; fwþrkg; fw�rkg;B PPArð½S;T�; rÞ;
if zðBÞ > best then begin

best set B;
best zðBÞ;

end;
if S ¼ T return (best; set, best);
xþ  maxfwþrk½S;T�jk 2 T nSg;
choose jþ from minfkjwþrk½S;T� ¼ xþ; k 2 TnSg
x�  maxfw�rk½S;T�jk 2 TnSg;
choose j� from minfkjw�rk½S;T� ¼ x�; k 2 TnSg;
if xþOe then (� Correction �)

IntDCAr ð½Sþ jþ;T�; e�maxf0; xþg; r; best set; bestÞ;
else if x� � e then (� Correction �)

IntDCAr ð½S;T� j��; e�maxf0; x�g; r; best set; bestÞ;
else begin (� Branching ½S;T� ! ½Sþ k;T�; ½S;T� k� �)

choose k from arg maxfdþi ðSÞ; d�i ðTÞji 2 TnSg;
if ub½Sþ k;T� > best then begin (� Bounding �)

ðbs1; b1Þ  IntDCArð½Sþ k;T�; e; r; best set; bestÞ;
if b1 > best then begin

best set bs1;
best b1;

end;
end;
if ub½S;T� k� > best then begin (� Bounding �)

ðbs2; b2Þ  IntDCArð½S;T� k�; e; r; best set; bestÞ;
if b2 > best then begin

best set bs2;
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3. Computational Experience

In this section we report our computational experience with DCAr. We
choose the quadratic cost partition problem as a test bed, since this prob-
lem has been earlier used to test the performance of the DCA algorithm in
[9]. The quadratic cost partition problem (QCP) can be described as fol-
lows (see e.g., [12]). Given nonnegative real numbers qij and real numbers
pi with i; j 2 N ¼ f1; 2; . . . ; ng, the QCP is the problem of finding a subset
S � N such that the function zðSÞ ¼

P
j2S pi � 1

2

P
i;j2S qij will be maxi-

mized. The density d of a QCP instance is the ratio of the number of finite
qij values to nðn� 1Þ=2, and is expressed as a percentage. It is proved in
Theorem 2.2 of Lee et al. [12] that zð�Þ is submodular.
In [9] computational experiments with QCP has been restricted to

instances of size not more than 80, because instances of that size have been
considered in [12]. For these instances, it was shown that the average calcu-
lation times grow exponentially when the number of vertices increases and
reduce exponentially with increasing density.
In this paper we report the performance of DCAr on QCP instances of

varying size and densities. The maximum time that we allow for an
instance is 10 CPU minutes on an personal computer running on a
300MHz Pentium processor with 64MB memory. The algorithms have
been implemented in Delphi 3.
The instances we test our algorithms on are statistically similar to the

instances in [12]. Instances of size n and density d% are generated as fol-
lows. A graph with n nodes and d

100�
nðn�1Þ

2 random edges is generated. The
edges are assigned costs from a U½1; 100� distribution, n edges connect each
node to itself, and these edges are assigned costs from a U½0; 100� distribu-
tion. The distance matrix of this graph forms a QCP instance.
We first report the effect of varying the value of r on the performance of

DCAr(r). It is intuitive that DCAr(r) will require more execution times
when the value of r increases. Our computation experience with 10 QCP
instances of size 100 and different densities is shown in Figures 1–3. Figure
1 shows the number of subproblems generated when r is increased from a
value of 0 (the DCA in [9]) to 5. As is intuitive, the number of subprob-
lems reduce with increasing r for all density values. Figure 2 shows the exe-
cution times of DCAr(r) with varying d and r values. Recall that when the
value of r increases, the time required at each subproblem increases, since

best b2;
end;

end;
end;

end;
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PPAr requires more computations for larger r values. The decrease in the
number of subproblems approximately balance the increase in the time at
each subproblem for r values in the range 0–4. When r ¼ 5, the computa-
tion times for DCAr(r) increase significantly for all densities. From Figure
2 it seems that for dense graphs, r values of 3 or 4 are most favorable. This
effect also holds for larger instances – Figure 3 shows the execution times
for instances of size n ¼ 200 and density d ¼ 100%.
We next report the results of our experiments to solve large sized QCP

instances with DCAr(r). Using results obtained from the previous part of
our study, we choose to use DCAr(3) as our algorithm of choice. We con-

r

# SP

10000

0
0 1 2 3 4 5

d = 70%

d = 80%

d = 90%

d = 100%

Figure 1. Average number of subproblems generated against r for QCP instances with n ¼ 100

and varying d values.

r
0 1 2 3 4 5

Time

0

0.2

0.4

0.6 d = 70%

d = 80%

d = 90%

d =100%

Figure 2. Average execution time (in seconds) against r for QCP instances with n ¼ 100 and

varying d values.
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sider instances of the QCP with size n ranging from 100 to 500 and densi-
ties varying between 10 and 100%. We try to solve these instances exactly
(e0 ¼ 0%), and with a prescribed accuracy e0 ¼ 5% within 10min. We
report in Table 1 the average execution times in seconds for exact and
approximate solutions with DCA(PPA3). The figures in parenthesis report
the average execution times for these instances with the DCA from Gold-
engorin et al. [9]. The entries marked ‘‘�’’ could not be solved within
10min. From the table, we note that the execution times increase exponen-
tially with increasing problem size and decreasing problem densities. There-
fore QCP instances with 500 vertices and densities between 90 and 100%
are the largest instances which can be solved by the DCAr(3) within 10min
on a standard personal computer. We also see that on an average DCAr(3)
takes roughly 11% of the time taken by DCA for the exact solutions, and
roughly 13% of the time taken by DCA for the approximate solutions. The
reduction in time is more pronounced for problems with higher size and
higher densities.
Finally, we make observations about the type of instances that are easy

or difficult for data correcting algorithms and for other algorithms. Most
exact algorithms depend on polyhedral bounds, and according to Poljak
and Rendl [15], ‘‘When the edge density is decreased, the polyhedral bound
is slightly better. On the other hand, increasing the density makes the poly-
hedral bound poor.’’ In other words, for almost all exact algorithms, aver-
age calculation times grow as edge densities increase.
In order to describe the difficulty of a QCP instance I, we define the fol-

lowing distance measure. Let S? denote the set of optimal solutions to I.
Then the distance measure is given by

distðI; nÞ ¼ max
kSj � n

2 j
n
2

� 100 :S 2 S?
� �

%:

It is clear from the description of DCAr that if the distance measure for an
instance is close to 100%, then the instance is easily solved by DCAr.

Time

0

3

1.5

0 1 2 3 4 5

r

Figure 3. Average execution time (in seconds) against r for QCP instances with n ¼ 200 and

d ¼ 100%.
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Figure 4 shows the variation of the distance measure with varying values
of the number of vertices and densities. The most interesting feature in this
figure is the fact that the distances are largest for dense graphs with larger
number of vertices, precisely the types of instances which are more difficult
for conventional enumeration algorithms. The high values of the distance
function makes such instances relatively easy to solve for DCAr. This
observation is borne out in Figure 5 in which we see that DCAr takes the
more time to solve sparse instances than to solve dense instances.
Thus data correcting algorithms nicely complement other enumeration

techniques for QCP.

4. Concluding Remarks

In this paper we propose a data correcting algorithm DCAr for the class
of submodular functions, which extends the DCA algorithm proposed in
[9]. It does this by using a preliminary preservation algorithm that looks at
multiple levels of the Hasse diagram. Theorem 3, being a generalization of
Theorem 1, forms the basis of the DCAr(r) algorithm. Theorem 3a states
that if an interval ½S;T� is split into ½S;T� k� and ½Sþ k;T�, then the maxi-
mum value of all differences between the submodular function values z at

Figure 4. distðI; nÞ for QCP instances with varying number of vertices and densities.
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levels rþ 1 and r is an upper bound to the difference between the unknown
optimal value on the discarded subinterval and the maximum of the
unknown value of the preserved subinterval and the maximum value of
zðIÞ on r levels of the Hasse diagram. Theorem 3b can be explained in a
similar manner. These upper bounds are used to implicitly ‘‘correct’’ the
value of z by correcting the value of the current accuracy.
We have tested the DCAr(r) on the QCP instances which are statistically

similar to the instances in [12]. In all the instances tested, the average cal-
culation time increases exponentially with decreasing density values for all
prescribed accuracy values. This behavior differs from the results of the
branch-and-cut algorithm in [12], in which calculation times increase when
densities increase. This effect is also demonstrated for all algorithms based
on linear programming (see e.g., [3, 14, 15]). This behavior makes the
DCA an algorithm of choice for QCP instances with high densities. Our
experiments with different values of r in the PPAr show that for the QCP
instances from Lee et al. [12], the best r values are 3 and 4. This effect
becomes more pronounced when the density of the corresponding instances
approach 100%.

Figure 5. Logarithms of average execution time (in seconds) for QCP instances with varying

number of vertices and densities.
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We have used the DCAr(3) to solve QCP instances with up to 500 verti-
ces on dense graphs within 10min using a personal computer with 64MB
RAM operating at 300MHz. These show an 8- to 10-fold improvement on
the performance of the DCA in [9]. Since the data correcting approach is
efficient for solving large QCP instances defined on the dense graphs, while
branch-and-cut algorithms are efficient for solving large instances on sparse
graphs, it will be interesting to investigate hybrids of the two for solving
large instances of the QCP for all densities.
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